Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Newly developed grating and soft X-ray spectrometer for electron probe microanalyser and transmission electron microscope; An Acquisition of the Li K emission spectrum with high-energy resolution and detection of light elements

Takahashi, Hideyuki*; Handa, Nobuo*; Murano, Takanori*; Terauchi, Masami*; Koike, Masato; Kawachi, Tetsuya; Imazono, Takashi; Hasegawa, Noboru; Koeda, Masaru*; Nagano, Tetsuya*; et al.

Proceedings of Microscopy and Microanalysis 2011 (Internet), 2 Pages, 2011/08

Soft X-ray spectroscopy with high-energy resolution gives useful information of the chemical bonding states in compounds. Terauchi et al. recently reported a high-energy resolution of 0.2 eV in the Al-L emission spectrum using the previously developed soft X-ray Emission spectrometer (SXES) with a transmission electron microscope. This spectrometer can design to detect the energy from 60 to 1200 eV. In order to progress this result, we had attempted to enhance the detection energy range. Especially to detect the Li-K emission spectrum, we are developing a spectrometer with newly designed aberration corrected gratings. The newly developed grating JS50XL can cover the X-ray energy range from 50 to 200eV with the high energy resolution. It actually means to detect Li-K (55 eV), Al-L (70 eV), Si-L (100 eV), B-K (180 eV) and high order of C-K (279 eV), N-K (392 eV), O-K (525 eV) and so on. This SXES can be equipped not only with TEM, but also with EPMA. Moreover, we found out that attached EPMA with SXES has another strong feature that the X-ray intensity is in directly proportional to probe current. This feature is very useful for the trace element analysis. In the case of Li-K, Be-K and B-K emissions, the detection limits have been evaluated to be a few tens of ppm. For example trace boron analysis is expected to evaluate the newly developed materials quantitatively. This developed spectrometer is hopeful to observe chemical bonding state and trace element analysis in many kinds of fields. In this presentation we report the results for fundamental and actual samples. This development is conducting as one project of Collaborative Development of Innovative Seeds (Practicability verification stage) by Japan Science and Technology Agency.

Journal Articles

An Extension up to 4 keV by a newly developed multilayer-coated grating for TEM-SXES spectrometer

Terauchi, Masami*; Takahashi, Hideyuki*; Handa, Nobuo*; Murano, Takanori*; Koike, Masato; Kawachi, Tetsuya; Imazono, Takashi; Hasegawa, Noboru; Koeda, Masaru*; Nagano, Tetsuya*; et al.

Microscopy and Microanalysis, 17(Suppl.2), p.604 - 605, 2011/07

We have been developing a soft X-ray emission spectroscopy (SXES) instrument for TEM. SXES combined with microscopy should be a hopeful method to reveal physical properties and chemical bonding states of identified small specimen areas of various compounds. Original SXES instruments for conventional transmission electron microscopes basically designed to detect from 60 eV to 1200 eV (or 2000 eV in extended version). For applying to material science, a much wider energy range is necessary. Thus, a new SXES development for electron microscope has started to obtain an energy range from 50 eV to 3800 eV. An extension in lower energy region was achieved by a new aberration corrected (varied-line-spaced: VLS) grating. Conventional gratings in soft-X-ray energy region have gold surface. Au has M-absorption edge at 2.2 keV and shows only a small reflectance higher than the energy. Thus, a new multilayer-coated (MLC) VLS grating has designed and manufactured for obtaining SXES spectra up to 4 keV at a grazing incident angle of 1.35 deg. This development is conducting as one project of Collaborative Development of Innovative Seeds (Practicability verification stage) by Japan Science and Technology Agency.

2 (Records 1-2 displayed on this page)
  • 1